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Abstract 

Monitoring and diagnosis of an out of control signals in manufacturing processes has become more challenging when it 

involves two or more correlated variables. In any production process and in the manufacturing industry, regardless of how well 

designed or carefully maintained it is, a certain amount of inherent or natural variability will always exist. The natural 

variability is the cumulative effect of many small, essentially unavoidable causes. A process that is operating with only chance 

causes of variation present is said to be in statistical control. In this paper we propose a method for approaching this problem 

based on principal components analysis. The principal component analysis method based on the ratios form was used to 

investigate which of the variable(s) were responsible for the out-of-control signal. A display of matrix of scatter plots was 

applied to investigate the correlation between the process variables and ellipses were used an approximate control limits. The 

principal component scores were used as an empirical reference distribution to establish a control region for the process to 

detect the variables causing the out-of-control signal. These insights derived from the principal component analysis offered 

valuable cues for identifying potential signals of an out-of-control process. The study findings indicated distinctive patterns of 

variance within the data, shedding light on potential signals for an out-of-control process. 
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1. Introduction 

Multivariate statistical process control (MSPC) techniques 

have long been integral to industry for evaluating process 

stability and final product quality. These techniques are cru-

cial in monitoring and maintaining the desired quality levels 

in manufacturing processes, which are inherently subject to 

some degree of variability. This variability is acceptable 

when it is small and caused by random, unidentified factors, 

a condition defined by [1] as a statistically in-control pro-

cess. However, excessive variability introduced by systemat-

ic factors renders a process out-of-control, necessitating rig-

orous statistical process monitoring (SPM) to detect and ad-

dress these anomalies. 

The research by [10] found that Control charts, the corner-

stone of SPM provide a graphical representation of sample 
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values related to product quality over time or across sample 

numbers. These charts are essential for visualizing and ana-

lyzing the process behavior, identifying variations that ex-

ceed normal levels. According to [7] variability in key quali-

ty characteristics typically originates from three primary 

sources: improperly adjusted or controlled machinery, opera-

tor errors, or defective raw materials. Such variability, larger 

than the background noise, signifies an unacceptable level of 

process performance and is classified as assignable causes of 

variation. [9] when a process operates in the presence of as-

signable causes, it is deemed out-of-control, necessitating 

immediate corrective actions to restore stability. 

In recent years, the study by [11] recognized that the focus 

of research has shifted towards identifying the specific out-

of-control variables after a multivariate control chart signals 

an anomaly. Traditional univariate methods fall short in 

complex industrial settings where multiple interrelated quali-

ty characteristics need monitoring simultaneously. The study 

by [12] proposed leveraging Principal Component Analysis 

(PCA) to identify the specific variables responsible for out-

of-control signals in multivariate settings. CA is a powerful 

statistical tool that reduces data dimensionality while retain-

ing most of the variation present in the dataset, making it 

easier to detect patterns and pinpoint sources of variation as 

outlined by [14]. 

Pioneering work by [3] introduced a PCA-based method for 

identifying out-of-control variables in multivariate control 

charts. This method includes deriving theoretical control lim-

its, step-by-step procedural instructions, and a comprehensive 

evaluation of its strengths and weaknesses. It also offers a 

graphical technique to address limiting situations and demon-

strates superior performance compared to existing PCA meth-

ods, largely due to its reduced computational burden. 

Research by [2] further emphasized the importance of 

checking for autocorrelation before applying control charts, 

as correlated data points can lead to misleading results, 

such as increased false alarm rates and masked actual corre-

lations between variables. Addressing autocorrelation is 

crucial for accurate multivariate control chart analysis, en-

suring that the identified signals accurately reflect process 

deviations. 

In the context of the Tumaini Mabati Company's iron sheet 

production process, a high defect rate has been observed, 

including issues like uneven thickness, surface imperfec-

tions, and inadequate tensile strength. These defects lead to 

material waste, higher production costs, customer com-

plaints, and potential financial losses. This study aims to 

employ PCA to identify the variable(s) contributing to the 

out-of-control signals in the company's production process. 

By pinpointing the exact sources of variability, the company 

can implement targeted interventions to enhance process 

stability and product quality, ultimately reducing defect rates 

and improving overall operational efficiency. 

2. Methods 

2.1. Data and Simulation Procedure 

A secondary data set from Tumaini Mabati manufacturing 

company, focusing on box profile iron sheets was used for 

this analysis. The goal was to determine if the sheets met 

quality standards. 

The principal components analysis (PCA) procedure was 

demonstrated using data on four process variables 

𝑥1, 𝑥2, 𝑥3 𝑎𝑛𝑑 𝑥4 from a manufacturing process. The first 20 

observations from the manufacturing process were plotted 

against each other in a pairwise manner to obtain a display 

known as a matrix of scatter plots. The PCA on 20 observa-

tion were predicted showing the eigenvalues and Eigen vec-

tors. A scatter plot of the first 20 principal components 

scores 𝑍𝑖1 and 𝑍𝑖2 were also plotted. Future 10 new observa-

tions on the process variables 𝑥1, 𝑥2, … . . , 𝑥𝑝  were obtained 

and their principal component scores computed and plotted 

on a control chart. The principal component scores for the 

new observations were plotted in a different control chart 

which was used to assist in identifying the scores of the new 

points. 

2.2. PCA for Dimensionality Reduction 

According to [8], a 𝑝 × 𝑝 symmetric, nonsingular matrix, 

such as the variance-covariance matrix Σ, is reduced to a 

diagonal matrix L by premultiplying and postmultiplying it 

by a particular orthonormal matrix 𝑈 such that 𝑈𝑇∑𝑈 = 𝐿, 

the diagonal elements of L, 𝑙1, 𝑙2, … . , 𝑙𝑝are the characteristic 

roots, or eigenvalues of Σ. The columns of U are the charac-

teristic vectors, or eigenvectors of Σ. The study by [13] on 

PCA transforms 𝑝  correlated variables 𝑥1, 𝑥2, … . , 𝑥𝑝  into 𝑝 

new uncorrelated ones. The main advantage of this method is 

the reduction of dimensionality. The first few principal com-

ponents (PCs) typically capture most of the process variabil-

ity as stated by [6] allowing us to focus on these instead of 

all original variables. 

2.3. Proposed Method 

Assuming that 𝑥𝑖 = (𝑥1𝑖 , 𝑥2𝑖 , … . , 𝑥𝑝𝑖)𝑇  denote the obser-

vation (vector) 𝑖 for the 𝑝 variables of a process. Let 𝑥𝑢 be a 

𝑝-dimensional normal distribution 𝑁𝑝 (𝜇0, ∑0 ), where 𝜇0  is 

the vector (𝑝 × 1) of known means and ∑0 is the known 

(𝑝 × 𝑝) variance-covariance matrix. 

The PCA model applied is defined as 

𝑍𝑘 = 𝜇1𝑘𝑋1 + 𝜇2𝑘𝑋2 + 𝜇3𝑘𝑋3 + ⋯ + 𝜇𝑃𝑘𝑋𝑝  

Where 𝑍𝑘 is the 𝑘  PC, (𝜇1𝑘, 𝜇2𝑘, … , 𝜇𝑝𝑘)𝑇  is the corre-

sponding 𝑘  eigenvector and 𝑋1, 𝑋2, … , 𝑋𝑝  are the process 

variables.  
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The score for vector x𝑖 in PC 𝑘 is 

𝑌𝑘𝑖 = 𝜇1𝑘𝑥1𝑖 + 𝜇2𝑘𝑥2𝑖 + ⋯ + 𝜇𝑝𝑘𝑥𝑝𝑖  

When an out-of-control signal in the control chart is de-

tected, the study used principal component analysis to identi-

fy the variable or variables that were responsible. For this 

objective one methodology was developed for the case that 

the covariance matrix has only positive correlations. 

2.4. Covariance Matrix with Positive 

Correlations 

In the case where all the variables are positively correlated 

the first two PCs are weighted average of all the variables. 

According to [4, 5], one of the existing methods for choosing 

principal components was to choose 𝑑 ≤ 𝑝 significant PCs. 

The method for the study is based on the ratios of the form: 

 𝑟𝑘𝑖 =
(𝜇𝑘1+𝜇𝑘2+⋯+𝜇𝑘𝑑)𝑥𝑘𝑖

𝑌1𝑖+𝑌2𝑖+⋯+𝑌𝑑𝑖
  

Where 𝑥𝑘𝑖  is the 𝑖𝑡ℎ  value of variable 𝑋𝑘 , 𝑌𝑗𝑖 , 𝑗 =

1,2, … . , 𝑑 is the score of the 𝑖𝑡ℎvector of observations in the 

𝑗𝑡ℎ PC.  

In the ratio, the numerator corresponds to the sum of the 

contributions of variable 𝑋𝑘 in the first d PCs in observation 

(vector) 𝑑 whereas the denominator is the sum of scores of 

observation (vector) 𝑖 in the first 𝑑 PCs. The rationale of this 

method is to compute the impact of each of the 𝑝 variables 

on the out-of-control signal by using its contribution to the 

total score. A multivariate chart is used when there is at least 

moderate and usually large correlation between the variables 

as outlined by [15]. Under such circumstances the first 𝑑 PCs 

account for the largest part of the process variability. 

3. Result and Discussion 

3.1. Residuals Versus the Process Variables 

The findings reveal a normal quantile-quantile (QQ) plot 

of the residuals versus the process variable. The data points 

roughly follow a straight line, indicating that the residuals 

are normally distributed, which is a good assumption for 

normality statistical tests as shown in figure 1. 

3.2. Residuals Versus Order of Data 

This scatter plot showed the residuals plotted against the 

order in which the data were collected. Ideally, there should 

be no pattern in this plot, indicating that the order in which 

the data were collected did not affect the results. The plot 

seems to show some randomness, which a good sign of the 

data analysis is as indicated in figure 1. 

3.3. Residuals Versus Fitted Values 

This scatter plot displays the residuals versus the fitted 

values of the response variable. In an ideal scenario, the re-

siduals should be randomly scattered around the horizontal 

line at zero, with no discernible pattern. This plot seems to 

show a nearly straight line, suggesting that the model per-

fectly captures the relationship between the factors and the 

response as shown in figure 1. 

 
Figure 1. Residuals versus Order of data; fitted values and cooks distance. 
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3.4. Cook's Distance 

This plot shows Cook's distance for each observation. 

Cook's distance is a measure of how influential each data 

point is on the fitted model. High Cook's distance values 

indicate observations that may have a large impact on the 

model and potentially warrant further investigation. The plot 

showed a few data points with higher Cook's distance, indi-

cating the observations that may have a large impact on the 

model as shown in figure 1. 

3.5. Summary Statistics for the Variables of the 

Study 

A standard normal distribution of data assists in creating 

reliable and accurate conclusions. Goodness of fit test for 

Skewness and Kurtosis test were used to find the normality 

of the data. This part shows important descriptive statistics of 

the data comprising of the mean, standard deviation, coeffi-

cient of variation, skewness, and kurtosis values of Pressure 

of the press of the rollers, flow of the hydraulic fluid, power 

applied to digital setting and spacing between the anode and 

the cathode wheel encoder (gap). 

The data of Pressure of the press of the rollers, flow of the 

hydraulic fluid, power applied to digital setting and spacing 

between the anode and the cathode wheel encoder (gap) was 

normally distributed since their skewness and kurtosis test 

values were falling within the range of ±3 and ±1 respective-

ly.  

Table 1. Summary statistics for the variables of the study. 

Response Mean Standard deviation Median Skewness Kurtosis 

Pressure of the rollers 13.508 9.8752 10.3 1.3061 1.1803 

Flow of the hydraulic fluid 4.2037 1.5807 4 0.4529 -0.3893 

Power applied to digital setting 4.5802 3.1657 4 1.3371 1.1981 

Spacing between the anode and the cathode wheel encoder (Gap) 14.6550 3.0755 4 0.3263 -0.4292 

3.6. Matrix of Scatter Plots for Process Variables 

The plots indicate that the first two variables, pressure (𝑥1) and flow (𝑥2) are highly corrected and the other two exhibit 

moderate correlation as shown in figure 2. 

 
Figure 2. Matrix of Scatter plots for the first 20 observations. 
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3.7. Control Chart for Phase I 

Figure 3 illustrates a scatter plot for the first 20 0bsevation 

principal component score along with 95% confidence con-

tour. The scores were used as an empirical reference distribu-

tion to establish a control region for the process. It is evident 

that all the scores of 𝑍𝑖1 and 𝑍𝑖2 are inside the ellipses indi-

cating that the process is in control phase.  

 
Figure 3. Scatter plot of the first 20 principal component scores 𝑍𝑖1 and 𝑍𝑖2. 

3.8. Control Chart for Phase II 

The first few new scores are inside the ellipse while some 

other principal component scores are outside the ellipse. This 

shows that there has been a shift in the process mean hence 

evidence for the signal that the process is on an out of control 

state. 

Table 2. Eigen Values. 

 Eigenvalues Percentage 
Cumulative 

Percentage 

PC1 2.36083004 59.020751 59.02075 

PC2 1.02865177 25.716294 84.73705 

PC3 0.53629105 13.407276 98.14432 

PC4 0.07422714 1.855679 100.00000 
 

Figure 4. Principal components scores for the new observations. 
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The analysis unveiled that the first principal component 

(PC1) accounted for the highest eigenvalue of 2.36083004, 

representing approximately 59.02% of the total variance. The 

second PC exhibited an eigenvalue of 1.02865177, contrib-

uting to approximately 25.72% of the total variance. The first 

two components cumulatively explained about 84.74% of the 

variance, signifying a substantial portion of the dataset's var-

iability. The third principal component (PC3) demonstrated 

an eigenvalue of 0.53629105, representing approximately 

13.41% of the total variance. When combined with PC1 and 

PC2, these three components captured approximately 

98.14% of the total variance, indicating a comprehensive 

representation of the data set's variability. 

Table 3. Eigen vectors. 

 X1 X2 X3 X4 

PC1 0.5965972 0.3071659 -0.2174849 -0.708816752 

PC2 0.5923728 0.3288784 -0.2088775 -0.705197616 

PC3 0.2642171 0.8266595 0.4965390 -0.016505466 

PC4 0.4726051 0.3378198 -0.8139530 -0.001644521 

The Eigen vector table, it is evident that each principal 

component captures distinct patterns of variance within the 

data. For instance, in PC1, positive coefficients for 𝑋1 and 𝑋2 

suggest a strong positive association, implying that variations 

in these variables contribute significantly to the variance 

captured by PC1. Similarly, in PC2, while 𝑋1  and 𝑋2  still 

exhibit positive coefficients, the negative coefficients for 𝑋3 

and 𝑋4 indicate an inverse relationship with PC2, suggesting 

that changes in these variables contribute negatively to the 

variance explained by PC2. The Eigen vectors reveal the 

varying degrees of influence each original variable has on 

different principal components. For instance, 𝑋2  demon-

strates a strong positive association with PC3, as indicated by 

its high positive coefficient, while 𝑋3 exhibits a weaker but 

still positive association. Conversely, 𝑋4 displays an inverse 

relationship with PC3, as evidenced by its negative coeffi-

cient. 

4. Conclusions and Recommendations 

4.1. Conclusion 

The methodology for determining an in-control state in the 

manufacturing process was straightforward: it involved veri-

fying whether the data point representing the current process 

state fell within the designated target range. This initial 

check served as a simple yet effective measure to ascertain 

process stability. However, when out-of-control signals were 

detected, the study delved deeper into additional diagnostic 

displays to pinpoint the sources of variation causing these 

signals. This thorough examination was crucial for accurate-

ly identifying the root causes of deviations from the desired 

process state. 

A pivotal part of this diagnostic approach was the use of 

principal component analysis (PCA). PCA provided critical 

insights by highlighting patterns and correlations within the 

data that might not be immediately apparent. These insights 

were instrumental in recognizing potential signals indicating 

an out-of-control process. By leveraging PCA, the study was 

able to develop more robust detection procedures, ensuring a 

higher level of accuracy in identifying and addressing issues 

within the manufacturing process of iron sheets. 

Ultimately, the combination of simple in-control state 

checks and advanced analytical techniques like PCA con-

tributed to a more effective and reliable process control 

system. This integrated approach not only enhanced the 

detection of out-of-control signals but also facilitated time-

ly and precise interventions, leading to improvements in the 

overall quality and consistency of the manufactured iron 

sheets. 

4.2. Recommendations 

An interesting areas for further research in the domain of 

multivariate statistical process control are robust design of 

control charts and nonparametric control charts. The research 

for multivariate attributes control charts is also a promising 

task. Further research need to be done, if more than two 

principal components need to be retained, because the inter-

pretation and use of the charts becomes cumbersome. Fur-

thermore, interpretation of the principal components can be 

difficult, because they are not the original set of process vari-

ables but instead linear combinations of them. The control 

charts and trajectory plots based on principal component 

analysis was most effective in detecting shifts in the direc-

tions defined by the principal components. Shifts in other 

directions, particularly directions orthogonal to the retained 

principal component directions, may be very hard to detect 

hence the need for further research. 

Abbreviations 

PCA Principal Components Analysis 

MSPC Multivariate Statistical Process Control 

SPM Statistical Process Monitoring 

PCs Principal Components 
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