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Abstract: In this paper, we are studied the weak Galerkin finite element method for the incompressible viscous Magneto-

hydrodynamic (MHD) equations. There have been the several numerical methods for the incompressible viscous Magneto-

hydrodynamic equations: the continuous Galerkin finite element methods, the discontinuous Galerkin finite element methods, and 

the mixed Galerkin finite element methods et al. These numerical methods are converted to large-scale system of linear or 

nonlinear equations, which are solved by direct or iterative method. Besides accuracy, efficiency, and robustness of numerical 

methods, physical properties such as local conservation and flux continuity are very important in practical applications. And these 

numerical methods have following properties. (1) The continuous Galerkin finite element methods are known as lacking of ‘‘local 

conservation’’. (2) The discontinuous Galerkin finite element methods are locally conservative but there is no continuity. Also the 

discontinuous Galerkin finite element methods increase in numbers of unknowns. (3) The mixed Galerkin finite element methods 

approximate the two variables that satisfy the inf-sup condition. Therefore the obtained saddle point problems are difficult to solve. 

A weak Galerkin finite element methods are locally conservative well, continuous across element interfaces, less unknowns than 

discontinuous Galerkin finite element methods, and definite discrete linear systems. A weak Galerkin finite element methods are 

based on new concept called discrete weak gradient, discrete weak divergence and discrete weak rotation, which are expected to 

play an important role in numerical methods for magneto-hydrodynamic equation. This article intends to provide a general 

framework for managing differential, divergence, rotation operators on generalized functions. With the proposed method, solving 

the magneto-hydrodynamic (MHD) equation is that the classical gradient, divergence, vortex operators are replaced by the 

discrete weak gradient, divergence, rotation and apply the Galerkin finite element method. It can be seen that the solution of the 

weak Galerkin finite element method is not only continuous function but also totally discontinuous function. For the proposed 

method, optimal order error estimates are established in Hilbert space. 

Keywords: Weak Galerkin Finite Element Method, Incompressible Viscous Magneto-hydrodynamic Equations,  

Discrete Weak Gradient, Discrete Weak Divergence, Discrete Weak Vortex, Navier-Stokes Equations 

 

1. Introduction 

Magneto-hydrodynamic (MHD) equations which have 

been widely used in industry and engineering, such as liquid 

metal cooling of nuclear reactors, process metallurgy, 

simulate aluminum electrolysis cells and so on are composed 

of Navier-Stokes equations of fluid dynamics and Maxwell’s 

equations of electromagnetism. These equations are 

concerned with the viscous, incompressible, electrically 

conducting fluid and an external magnetic field. In this paper, 

we consider the magneto-hydrodynamic equations. 

( ) ( )u
u u u B B,     ,     0,p a rot x t T

t
γ∂ − ⋅ ∆ + ⋅∇ + ∇ = ⋅ × ∈ Ω ∈

∂
                                         (1) 
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B 1
E 0,     j B (E u B J )crot rot

t µγ
∂ + = = = + × +
∂                                                      (2) 

  u 0,     B 0div div= =                                                                              (3) 

with the following initial condition and homogeneous Dirichlet boundary conditions. 

0 0 0 0u u ( ),    B B ( )     t tx x x= == = ∈ Ω                                                             (4) 

u 0,    B n 0,     E n 0,    J n 0 ( , ) (0, )c x t T= ⋅ = × = × = ∈ ∂Ω×                                              (5) 

where ( 2, 3)nR nΩ ⊂ =  is a bounded-closed, convex 

domain with Lipschitz-continuous boundary ∂Ω , u, B, E, j  

are velocity, magnetic field, intensity of electric field, electric 

current density, Jc  is minor control possible electromotive 

force, p is hydrodynamic pressure, 

21 1
 ,  , 

e e

M
a

R R R R
µ

µ µ
γ γ= = =  and the three parameter 

, ,eR R Mµ  represent hydrodynamic Reynolds number, 

magnetic Reynolds number and Hartmann number. Because 

MHD equations have practical significance in many fields of 

science, technology and production, many researchers gave 

some research results for magneto-hydrodynamic. [1, 2, 7, 9]. 

Some research results are given as follows: 

In [3–5], the mixed and stabilized FE methods were used 

to solve MHD equations. 

Additionally, Y. He [8] studied an unconditional 

convergence of the Euler semi-implicit scheme and G. Yuksel 

and R. Ingram [6] investigated a full discretization of Crank–

Nicolson scheme for the non-stationary MHD equations with 

small magnetic Reynolds numbers. 

In [10], it was studied the design and analysis of some 

structure preserving finite element schemes for the magneto-

hydrodynamics (MHD) system. 

X. Feng et al have applied some Uzawa-type iterative 

algorithms to the steady magneto-hydrodynamic (MHD) 

equations discretized by mixed finite element method [11]. 

In [12], it has focused on a fractional-step finite element 

method for the magneto-hydrodynamics problems in three-

dimensional bounded domains. 

In [13], the convergence analyses of standard Galerkin 

finite element method and a new highly efficient two-step 

algorithm for the stationary incompressible magneto–

hydrodynamic equations was studied. 

In [14], it was devoted to extension of boundary element 

method (BEM) for solving coupled equations in velocity and 

induced magnetic field for time dependent magneto-

hydrodynamic (MHD) flows through a rectangular pipe. 

In [15], Y. Rong and Y. Hou have studied a partitioned 

scheme based on Gauge-Uzawa finite element method for the 

2D time-dependent incompressible magneto-hydrodynamics 

(MHD) equations. 

In this paper, we are going to propose a formulation for the 

weak Galerkin finite element method for the magneto-

hydrodynamic (MHD) equations (1)–(5). 

The weak Galerkin (WG) method was recently introduced 

in [16] for second-order elliptic problems based on local RT 

elements. 

It is an extension of the standard Galerkin finite element 

method where classical operators (e.g., gradient, 

divergence, and curl) are substituted by weakly defined 

operators. 

Then, in [17], the weak Galerkin method was extended to 

allow arbitrary shapes of finite elements in a partition by 

adding parameter free stabilizer, which enforces a certain 

weak continuity and provides a convenient flexibility in mesh 

generation. 

Through rigorous analysis, the optimal order of priori error 

estimates has been established for various weak Galerkin 

discretization schemes for second order elliptic equation in 

[16–18]. 

And the possibility of an optimal combination of 

polynomial spaces that minimizes the number of unknowns 

has been explored in several numerical experiments in [19]. 

On the base of the weak Galerkin mixed finite element 

methods, the weak Galerkin method for the Stokes equations 

was stated in [20]. 

In [28], it was considered the lowest-order weak Galerkin 

method for linear elasticity based on the displacement 

formulation. 

Moreover, because the weak Galerkin method inherits the 

advantages and abandons the weaknesses of a discontinuous 

Galerkin or discontinuous Petrov–Galerkin method, it has 

been developed to solve many equations. 

Thus, we refer to several papers for applications of the 

WG method to some other partial differential equations, 

such as, elliptic interface equations [31], Oseen equations 

[21], Helmholtz equations [22, 23], Darcy–Stokes 

equations [24, 29, 30], convection–diffusion–reaction 

equations [32], Sobolev equation [33] and parabolic 

equations [25–27] etc. 

It is well known that the magneto-hydrodynamic 

equations involve a trilinear term, which changes the 

essence of all the problems considered so far (linear or 

nonlinear problems). 

The goal of this article are to construct and analyze a 

stable weak Galerkin finite element method for the magneto-

hydrodynamic equations (1)–(5) by using the definition of a 

weak trilinear term. 

This method allows the use of finite element partitions 

with arbitrary shapes of polygons or polyhedra with shape 
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regularity and parameter free. 

An outline of this paper is as follows. In the next 

section, we introduce some notations for the magneto-

hydrodynamic equations (1)–(5) and Sobolev spaces. In 

Section 3, the fundamental definitions and weak Galerkin 

finite element scheme for the magneto-hydrodynamic 

equations are developed. Then, in Section 4, we estimate 

the error of weak Galerkin finite element approximation 

solution for the incompressible viscous Magneto-

hydrodynamic equations. 

In Section 5, we give numerical experiment to verify the 

studied theoretical analysis. Finally, conclusions are drawn in 

Section 6. 

2. Preliminary Results and Notations 

From the systems of equations (1), (2). 

( )u
u u u B B 0p a rot

t
γ∂ − ⋅∆ + ⋅∇ + ∇ − ⋅ × =

∂
 

B
B (u B) Jcrot rot rot rot

t
µγ∂ + ⋅ ⋅ − × =

∂
 

u 0,    B 0div div= =  

Therefore, we consider the following non-stationary 

incompressible magneto-hydrodynamic equations. 

2u 1
u u u B B ( u ) 0 ( , ) (0, ),

2
rot a rot p x t T

t
γ∂ − ⋅ ∆ + × − ⋅ × + ∇ + = ∈ Ω×

∂
                                   (6) 

B
B (u B) J ( , ) (0, ),crot rot rot rot x t T

t
µγ∂ − ⋅ − × = ∈ Ω×

∂
                                   (7) 

u 0,    B 0 ( , ) (0, ),div div x t T= = ∈ Ω×                                      (8) 

with the initial-boundary conditions 

0 0 0 0u u ( ),    B B ( )     t tx x x= == = ∈ Ω                                                             (9) 

u 0,   B n 0,   J n 0 ( , ) (0, )c x t T= ⋅ = × = ∈ ∂Ω×                                                        (10) 

We introduce the following notations of some norms and spaces: 

2 2L ( ) ( )
d

L Ω = Ω 
, 1 1

2 2W ( )
d

W = Ω 
, ( 2 3)d ,=  

{ }2 2
H( , ) v v L ( ), v ( )div LΩ = ∈ Ω ∇⋅ ∈ Ω  

{ }2 2
H( , ) v v L ( ), v L ( )rot Ω = ∈ Ω ∇× ∈ Ω  

( ){ }2
1 2H H w L w 0, w n 0div ∂Ω= = ∈ Ω = ⋅ =  

( ){ }1
1 2V u W u 0, u 0 ,div ∂Ω= ∈ Ω = =  

( ){ }1
2 2V B W B 0, B n 0div ∂Ω= ∈ Ω = ⋅ =  

( ) ( ) ( ){ }2 2
3 0V H , u L u L , u n 0rot rot ∂Ω= Ω = ∈ Ω ∈ Ω × =  

1(u, v) u v x,        u (u, u),       u, v Hd
Ω

= ⋅ = ∀ ∈∫  or 2H  

1[u, v] ( u,   v) u v x,   u [u, u],     u, v Vrot rot rot rot d

Ω

= = ⋅ = ∀ ∈∫  or 2V  

1 2 1 2H H H , V V V , V H H V′ ′= × = × ⊂ = ⊂  

where 1( u,   v) ( u,   v) u, v Vrot rot = ∇ ∇ ∀ ∈  and H ,  V′ ′  are dual spaces of H, V . 

We define the operators 1 1 1:V VA → , 2 2 2:V VA → , :V VA ′→ , :V V VG ′× → , 2:L ( ) VF ′Ω →  following as: 
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( ) ( ) ( )
( )

( )

1 2 1 2

1

2

y, z u, v B, w (u, v) (B, w)

(u, v) u, v

(B, w) B, w

A A A a a

a

a rot rot

µ

µ

γ γ

γ

γ

= + = +

= ∇ ∇

=

 

( ) ( ) ( )1 2 1 2 2 1 2 1(y , y ), z u u B B , v u B , wG rot rot rot= × − × − ×  

( )(J ), z (J , w)c cF rot= , 

where { }y u, B= , { }1 1 1y u , B= , { }2 2 2y u , B= , { }z v, w V= ∈ , 2J L ( )c ∈ Ω  

For the operator :V VA ′→ , 

( ) { }
( ) ( )

2
y, y y ,    min ,

y, z y, z ,    y, z V

A

A A

µα α γ γ≥ =

= ∀ ∈
 

For the operator :V V VG ′× → , representing (y, y) [y]G G= , 

( )(y, z), z 0G = , ( ) ( ) ( ) ( )[y], z u u, v B B, v u B, wG rot rot rot= × − × − × . 

By the Hölder’s inequality, we can know that norm satisfies 4

1 3

4 4
L ( )

u u uKΩ ≤ ⋅ . 

For operator :V V VG ′× → , the trilinear form ( )1 2 3(y , y ), yG  satisfies. 

( )
3 13 1

4 44 41 2 3 1 1 1 2 3 3 1 2 3(y , y ), y y y y y y ,    y ,  y , y ,G C V≤ ⋅ ⋅ ⋅ ⋅ ∈                                        (11) 

( )
1 1

2 21 2 3 1 1 2 2 3 1 2 3(y , y ), y y y y y ,    y ,  y ( ),  y ,G C A V D A H≤ ⋅ ⋅ ⋅ ∈ ∈ ∈                                   (12) 

where 1 0C >  is a constant independent of Ω , eR , Rµ . [34]. 

The weak formulation of problem (6) - (10) can be written a variation forms as follows. 

( )(y, z) ( y, z) ( [y], z) (J ), z z V, (0, ),cA G F t T+ + = ∀ ∈ ∀ ∈&                                           (13) 

0y(0)  y z V,= ∀ ∈                                                         (14) 

where { }y u, B=  is called a weak solution if 2y (0, ; V)L T∈  

and 2y (0, ; V )L T ′∈&  are the solutions of equations (13) – (14). 

Next, we will introduce the weak gradient operator, weak 

divergence operator and newly weak rotation operator 

defined on a space of generalized functions. 

To explain weak gradient, weak divergence and weak 

rotation, let K  be any polygonal domain with interior 0K  

and boundary K∂ . 

A weak function on the region K  refers to a function 

{ }0v v , vb=  such that 2
0v L ( )K∈  and 

1 1

2 2v H ( ) ( )

d

b K H K
 
 ∈ ∂ = ∂
  

, where the first component 0v  

can be understood as the value of v  in the interior of K  and 

the second component vb  is the value of v  on the boundary 

of K . 

Denote by W( )K  the space of weak functions associated 

with K ; i.e., 

{ }
1

2 2
0 0W( ) v v , v v L ( ), v H ( )b bK K K

  = = ∈ ∈ ∂ 
  

  (15) 

The dual of 2L ( )K  can be identified with itself by using 

the standard 2L  inner product as the action of linear 

functional. 

Definition 1. ([16]) For any v W( )K∈ , the weak gradient 

of v  is defined as a linear function vw∇  in the dual space of 

H( , )div K  whose action on each q H( , )div K∈  is given by 

0( v, q) (v , q) v , q nw K K b K∂∇ = − ∇ ⋅ + < ⋅ > , 

where n  is the outward normal direction to K∂ . 

The discrete weak gradient operator denoted by , ,w r K∇  is 

defined as the unique polynomial , , v [ ( )]d d
w r K rP K ×∇ ∈  

satisfying the following equation: 
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, , 0( v, w) (v , w) v , w n , w [ ( )]d d
w r K K K b K rdiv P K ×

∂∇ = − + < ⋅ > ∀ ∈                                    (16) 

Definition 2.([16]). For any v W( )K∈ , the weak divergence of v  is defined as a linear function vwdiv  in the dual space of 

1
2 ( )W K  whose action on each 1

2 ( )q W K∈  is given by 

0( v, ) (v , ) v n,w K K b Kdiv q q q ∂= − ∇ + < ⋅ > , 

where n  is the outward normal direction to K∂ . 

The discrete weak divergence operator denoted by , ,w r Kdiv  is defined as the unique polynomial , , v ( )w r K rdiv P K∈  satisfying 

the following equation: 

0( v, ) (v , ) v n, , ( )w,r,K K K b K rdiv q q q q P K∂⋅ = − ∇ + < ⋅ > ∀ ∈                                           (17) 

Then we introduce the definition of a weak rotation operator. 

Definition 3. For any v W( )K∈ , the weak rotation of v  is defined as a linear function vwrot  in the dual space of 

H( , )rot K  whose action on each q H( , )rot K∈  is given by 

0( v, q) (v , q) v n, qw K K b Krot rot ∂= − < × > , 

where n  is the outward normal direction to K∂ . 

The discrete weak rotation operator denoted by , ,w r Krot  is defined as the unique polynomial , , [ ( )]d
w r K rrot P K∈  satisfying 

the following equation: 

0( , q) (v , q) v n, q , q [ ( )]d
w,r,K K K b K rrot rot P K∂= − < × > ∀ ∈                                        (18) 

3. Weak Galerkin Finite Element 

Method (WGFEM) 

In this section, we design a continuous time and 

discontinuous time WGFEM for the problem (13)–(14). 

Let hK  be a regular, quasi-uniform partition of the domain 

Ω and hK K∈  be any polygonal domain with interior 0K  

and boundary K∂ , where the mesh size max Kh h= , Kh is the 

diameter of element K . 

Then, we can introduce the discrete weak Galerkin 

finite element spaces on a given mesh: for the velocity 

variable, 

{1 0 0 1V u {u , u } u [ ( )] , u [ ( )]h h h d h d
h h b i b i

K K
P K P K−∂

= = ∈ ∈ for all }hK K∈  

and denote { }0
1 0 1V u {u , u } u V , u 0h h h
h h b h h b

K∂ ∂Ω
= = ∈ =

I
; for the magnetic field variable, 

{2 0 0 1V B (B , B ) B [ ( )] , B [ ( )]h h h d h d
h h b i b i

K K
P K P K−∂

= = ∈ ∈  for all }hK K∈  

and denote { }0
2 0 2V B {B , B } B V , B n 0h h h

h h b h h b
K∂ ∂Ω

= = ∈ ⋅ =
I

. 

Moreover, we denote 0y {y , y }h h
h b=  by 

0 0 0y {u , B }, y {u , B }h h h h h h
b b b= = . 

In the further, we shall drop the subscript r  and K  to 

simplify the notations for the discrete weak gradient, 

divergence and rotation operators. 

To investigate the approximation properties of the discrete 

weak Galerkin finite element spaces 1V h  and 2V h , we use 

three projection operators: 0v { v, v}h bQ Q Q=  is 2L  

projection operator from 1
2W  onto 1V h  or 2V h , R vh  is 2L  

projection operator onto ( ) d d

iP K
×

   , vhR  is 2L  projection 

operator onto ( )iP K  and vhΠ  is 2L  projection operator 

from H( , )div Ω  onto H( , )div Ω , v [ ( )]d
h iP KΠ ∈  satisfies. 

0 0 0( v, ) ( v, ) ( )K h K idiv v div v v P K= Π ∀ ∈                                                   (19) 

For 1 2y {u, B} V V V= ∈ = × , we set y { u, B}h h hQ Q Q= , R y {R u, R B}h h h= , y { u, B}h h hR R R=  and y { u, B}h h hΠ = Π Π . 
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The 2L  projection operators hQ , Rh  and hR  satisfy the following properties. 

Lemma 3.1. For any 1 2y {u, B} V V V= ∈ = × , The 2L  projection operators hQ , Rh  and hR  satisfy 

y R ( y)w h hQ∇ = ∇ , y ( y)w h hdiv Q R div= , y R ( y)w h hrot Q rot=                                              (20) 

0

,0,
y y y 0 , ,

s
h K hs KK

Q Ch s i K K− ≤ ≤ ≤ ∈                                                          (21) 

1,0,
y y y 0 1,s

w h K hs KK
Q Ch s i K K+∇ − ∇ ≤ ≤ ≤ + ∈                                                   (22) 

Proof. From Definition 1, 2L  projection operator yhQ  and Green’s formula, we have 

0y q ( y) q ( y)q n , q [ ( )]
d d

w h b i

K K K

Q dx Q dx Q ds P K
×

∂

∇ ⋅ = − ∇ ⋅ + ⋅ ∀ ∈∫ ∫ ∫                                              (23) 

Since 0Q  and bQ  are 2L -projection operator, then the right-hand side of (23) is given by 

0( y) q ( y)q n y q yq n ( y) q R ( y) qb h

K K K K K K

Q dx Q ds dx ds dx dx

∂ ∂

− ∇ ⋅ + ⋅ = − ∇ ⋅ + ⋅ = ∇ ⋅ = ∇ ⋅∫ ∫ ∫ ∫ ∫ ∫  

This shows that y R ( y)w h hQ∇ = ∇  holds. 

Similarly, from Definition 2, we can derive y ( y)w h hdiv Q R div= and y ( y)w h hrot Q R rot= . 

Also, it implies approximation property (21) and estimate (22). 

Lemma 3.2. For any ( ) ( )H ,  H ,  q div div∈ Ω × Ω , 

( ) ( ) 0 0
0 0 1 2,  y ,   y ,      y (y , y ) V V

h h

h w b h hK K
K K K K

q q

∈ ∈

−∇ ⋅ = Π ∇ ∀ = ∈ ×∑ ∑                                       (24) 

Proof. From 2L  projection hΠ  and Definition 1, 

( ) ( ) ( ) ( ) ( )0 0,  y ,   y ,   y y ,  ,   y∂
∈ ∈ ∈ ∈ ∈

−∇ ⋅ = −∇ ⋅Π = Π ∇ − Π ⋅ = Π ∇∑ ∑ ∑ ∑ ∑
h h h h h

h h w b h h wK K T K K
K K K K K K K K K K

q q q q n q

 

The weak Galerkin finite element method is to replace the 

classical gradient and rotation operators by the weak gradient 

operator w∇  and weak rotation operator wrot  and to use the 

discrete weak finite element space 0 0
1 2V Vh h× . 

First, we introduce the semi-discrete WG finite element 

method. 

The semi-discrete WG finite element method of (13)–(14) 

is to find 0 0
1 2y ( , ) V Vh h hx t ∈ × , satisfying u 0h

b =  and 

B n 0h
b ⋅ =  on , [0, ]t T∂Ω ∈  for y y {u , B }h h h

b b b bQ = = , 

0y ( , 0) yh hx Q=  in Ω  and the following equation. 

( ) 0 0
0 0 1 2(y , z ) (y , z) ( [y ], z) (J ), z , z V V , [0, ]h h h c h hA G F t T+ + = ∀ ∈ × ∈&                                  (25) 

where ( )y, zA  and ( [y], z)G  are respectively the weak bilinear and trilinear form defined by 

( )
( ) ( )

( )

1 2

1

2

y, z (u, v) (B, w)

(u, v) u, v u, v

(B, w) B, w

w w w w

w w

A a a

a rot rot

a rot rotµ

γ γ

γ

= +

= ∇ ∇ =

=
 

( ) ( ) ( )[y], z u u B B, v u B, ww w w wG rot rot rot= × − × − ×  

and ( )0(J ), zcF  is defined by ( )0 0(J ), z (J , w )c c wF rot= . 

For the equation (25), we can get the following splitting equation, respectively: 
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( ) ( ) ( )

( ) ( ) ( )

0

0 0

u
, v u , v u u , v B B , v 0

B
, w B , w u B , w J , w ,

h
w h w w h h w h h

h
w h w h h w c w

rot rot
t

rot rot rot rot
t

µ

γ

γ

 ∂ + ⋅ ∇ ∇ + × − × = ∂ 


∂  + − × =  ∂ 

                                    (26) 

where ( ) ( )u, v u, v

h

w w w w K
K K∈

∇ ∇ = ∇ ∇∑ , ( ) ( )B, w B, w

h

w w w w K
K K

rot rot rot rot

∈

= ∑ , ( ) ( )u, v u, v

h

w w K
K K

rot rot

∈

= ∑ . 

Next, we turn our attention to the full discrete WG finite element method. 

Let τ  be the time step size and nt nτ= , where n  is a nonnegative integer. 

We denote by y ( ) yn
h n ht =  the approximation of y( )nt . 

Writing the full discrete WG finite element scheme for equation (13)–(14), 

( ) 0 0 0
0 0 1 2 0( y , z ) (y , z) ( [y ], z) (J ), z , z V V , y y∂ + + = ∀ ∈ × =n n n

t h h w h c h h h hA G F Q                                (27) 

where 
1

y y
y

k k
k h h

t h τ

+ −
∂ =  or 

1
y y

y
k k

k h h
t h τ

−−
∂ = . 

For the equation (27), we can get the following splitting equation, respectively: 

( ) ( ) ( )

( ) ( ) ( )

1

0

1

0 0

0 0
0 0

u u
, v u , v u u , v B B , v 0

B B
, w B , w u B , w J , w

u u , B B

n n
n n n n nh h

w h w w h h w h h

n n
n n nh h

w h w h h w c w

h h h h

rot rot

rot rot rot rot

Q Q

µ

γ
τ

γ
τ

−

−

 −
+ ⋅ ∇ ∇ + × − × =   


 − + − × =  
 

= =

                                   (28) 

or 

( ) ( ) ( )

( ) ( ) ( )

1

0

1

0 0

0 0
0 0

u u
, v u , v u u , v B B , v 0

B B
, w B , w u B , w J , w

u u , B B

n n
n n n n nh h

w h w w h h w h h

n n
n n nh h

w h w h h w c w

h h h h

rot rot

rot rot rot rot

Q Q

µ

γ
τ

γ
τ

+

+

 −
+ ⋅ ∇ ∇ + × − × =   


 − + − × =  
 

= =

                                   (29) 

This approximate solutions uk
h  and Bk

h  are called the 

approximate solutions of the full discrete WG finite element 

method for the equations (13) –(14). 

Remark 1. In this article, we haven`t indicated for the 

hydrodynamic pressure ( , )p p x t= , because we can find 

easily the hydrodynamic pressure ( , )p p x t=  from the 

equation (6) if we have found out the approximate solutions 

uk
h  and Bk

h  in the equation (26) or (28). 

4. Error Analysis of Approximate 

Solution 

In this section, we derive some error estimates for semi-

discrete and full discrete WG finite element methods. 

By means of projections hQ  and Rh , we can derive the 

following approximation property. 

Lemma 4.1. For ( )1u, B H s+∈ Ω  with 0s > , we have 

respectively. 

( ) ( )
1

u u us
h w h s

Q ch +Π ∇ − ∇ ≤ , ( ) ( )
1

B B Bs
h w h s

rot rot Q ch +Π − ≤                                    (30) 

( )
1

u u us
w h s

Q ch +∇ − ∇ ≤ , ( )
1

B B Bs
w h s

rot rot Q ch +− ≤                                            (31) 

Proof. Since from (20) we have u R ( u)w h hQ∇ = ∇  and B R ( B)w h hQ∇ = ∇ , then 



 Engineering Mathematics 2022; 6(1): 6-17 13 

 

( ) ( ) ( )u ( u) u R uh w h h hQΠ ∇ − ∇ = Π ∇ − ∇  

Using the triangle inequality and the definition of hΠ , we have 

1 1
1 21 1 1

( u) R ( u) ( u) u u R ( u) u u u+ +
+ + +Π ∇ − ∇ ≤ Π ∇ − ∇ + ∇ − ∇ ≤ ∇ + ∇ ≤s s s

h h h h s s s
c h c h ch  

 

Similarly, we can derive 

( ) ( )
1

B B Bs
h w h s

rot rot Q ch +Π − ≤ . 

The estimate (4.2) can be derived in a similar way. This 

completes a proof of the lemma. 

Next, we shall prove the following estimate for the error of 

the semi-discrete solution. 

Next, we introduce following lemma. [26]. 

Lemma 4.2. Assume that 0 0
0 1 2y {u, B} {y , y } V Vb h h= = ∈ ×

0 0 0(y {u , B }, y {u , B })b b b= = , then there exist a constant 

C  such that 

y ywC rot≤                                 (32) 

where 1 2y V Vw h h∇ ∈ × . 

Theorem 4.3. Let ( )1y H s+∈ Ω  and yh  be the solutions of 

equations (13)–(14) and (25), respectively. Then, there exists 

a constant c%  such that 

( ) ( ) 2 2

1

0

y y y

t

s
h h s

t Q t ch dt+− ≤ ∫%               (33) 

where y ( ) {u ( ), B ( )}, y( ) { u, B}h h h h h ht t t Q t Q Q= = . 

Proof. Let { } 0 0
0 1 2z z ,  z V Vb h h∈ ∈ ×  be the testing function. 

For ( )1y sH +∈ Ω , we know that ( ) ( )y R yw h hrot Q rot= ,

0 0( y,  z ) (y,  z )hQ =& &  and 0 0( y,  z ) (y,  z )hQ = . 

For ( )1y sH +∈ Ω , we obtain 

( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 0

0

(J ),  z (y,  z ) (y,  z) (y, y),  z (y,  z ) ( y),  z (y, y),  z

( y,  z ) ( y),  z ( y) R ( y),  z ( y,  y),  z .

∈

= + + = + Π +

= + + Π − ∇ +

∑& &

&

h

c K w h w w

K K

h w h w h h w w h h

F A G rot rot G

Q rot Q rot rot rot G Q Q

 

Also, as the solution yh  of equation (25), we have 

( )( ) ( ) ( ) ( )0 0J ,  z y ,  z y ,   z (y , y ),  zc h w h w w h hF rot rot G= + +&  

Combining the above two equations, we get 

( ) ( ) ( ) ( ) ( )0y y,   z (y y),  z ( y) R ( y),   z ( y,  y),  z (y ,  y ),  z− + − = Π − ∇ + −& &
h h w h h w h h w w h h w h hQ rot Q rot rot rot G Q Q G    (34) 

Now, Denote by e : y yh h hQ= −  the difference between the weak Galekin approximation and the 2L  projection of the exact 

solution y . 

Substituting eh  for z  in (34) and using the Cauchy-Schwarz inequality, we obtain 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

0

3 1

4 4

(e ,  e ) e ,  e ( y) R ( y),  e ( y,  y), e

(y ,  y), e (y ,  y), e (y ,  y ), e

( y) R ( y),  e (e ,  y), e

( y) R ( y) e e e y e

+ = Π − +

− + −

= Π ∇ − −

≤ Π − ⋅ + ⋅ ⋅ ⋅

&
h h w h w h h h w h w h h h

w h h h w h h h w h h h

h h w h w h h h

h h w h h h h

rot rot rot rot rot G Q Q

G Q G Q G

rot rot rot G Q

rot rot rot c Q
3 1

4 4

3 1

2 2

3 1

2 2

2 2 2 2

1

2 2 2

2

e

( y) R ( y) e e e y

( y) R ( y) e e e y

1 3 1
( y) R ( y) e e e

4 4 4

( y) R ( y) e e

⋅

≤ Π − ⋅ + ⋅ ⋅

≤ Π − ⋅ + ⋅ ⋅

≤ Π − + + +

= Π − + +

h h

h h w h h h h

h h w h w h h

h h w h w h

h h w h h

rot rot rot c Q

rot rot rot c rot

rot rot rot rot c

rot rot rot c

 

Therefore, we have 
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2 2 2 2 2

2

1
e e ( y) R ( y) e e

2
h w h h h w h h

d
rot rot rot rot c

dt
+ ≤ Π − + + . 

We obtain by Lemma 4.1. 

2 2 22
2 1

1
e e y

2

s
h h s

d
c c h

dt +
′≤ + .              (35) 

Thus, integrating with respect to t  and from ( ), 0 0e ⋅ = , 

we arrive at 

2 222
21

0 0

e 2 y 2 e

t t

s
h hs

c h dt c dt+
′≤ +∫ ∫             (36) 

By Gronwall’s inequality 

2 22

1

0

e e 2 y

t

ct s
h s

c c h dt+
′≤ ∫                  (37) 

That is, 

2 22

1

0

e y

t

s
h s

c h dt+≤ ⋅ ∫%  

The proof is completed. 

Now, we shall derive an error estimate for the full discrete 

WG approximation. 

Theorem 4.4. Let ( )1y H s+∈ Ω  and yn
h  be the solutions of 

equations (13)–(14) and (28), respectively. Denote by 

e : y y( )n n
h h nQ t= −  the difference between the full discrete 

WG approximation and the 2L  projection of the exact 

solution y . 

Then, there exists a constant C  such that 

( )
2

2
2 2 2 20 2 2

21
1 0

y
e e e y          ( 0)

ntn
n i r

w r
i

s
rot C h ds n

t
τ τ τ+

=

 ∂ + ≤ + ⋅ + >
 ∂ 
 

∑ ∫                             (38) 

where y y ( ) {u ( ), B ( )}, y( ) { u, B}n
h h n h n h n h n h ht t t Q t Q Q= = = . 

Proof. From the equations (13) and (27), 

( )0 0(y, z ) (y, z) (y, y, z) (J ),cA G F z+ + =&                                                                (39) 

( ) ( )
1

0 0

y y
, z (y , z) y , y , z (J ),

n n
n n nh h
h w h h cA G F z

τ

− −
+ + =  

 
                                                  (40) 

Subtracting the equation (39) from the equation (40). 

( ) ( )
1

0

y y
y( ), z (y , z) (y( ), z) y( ), y( ), z y , y , z

n n
n n nh h

n h n n n w h ht A A t G t t G
τ

− −
− + − = −  

 
&                          (41) 

Writing the equation (41) similarly with the equation (34), 

( ) ( ) ( )

1
1 1

0 0

y y y( ) y( ) y( ) y( )
, z y( ), z (y , z) (y( ), z)

( y( )) R ( y( )),  z y( ), y( ), z y , y , z

−
− − − − − − + − + −       

= Π − + −

&
n n

nh h h n h n h n h n
n h n

n n
h n h n w n n w h h

Q t Q t Q t Q t
t A A t

rot t rot t rot G t t G

τ τ τ  

Rewriting the above equation, 

( ) ( ) ( )

1
1 1

0 0

y y y( ) y( ) y( ) y( )
, z y ( ), z (y , z) ( y( ), z)

( y( )) R ( y( )),  z y( ), y( ), z y , y , z

−
− − − − − − + − + −       

= Π − + −

&
n n

nh h h n h n h n h n
h n h h n

n n
h n h n w n n w h h

Q t Q t Q t Q t
t A A Q t

rot t rot t rot G t t G

τ τ τ  

Taking account of e y y( )n n
h h nQ t= − , we obtain 
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( )

( ) ( )

1
1

0 0

y( ) y( )e e
, z (e , z) y ( ) , z ( y( )) R ( y( )),  z

                                   y( ), y( ), z y , y , z

−
−  −−  + = − + Π −       

+ −

&
n n

n n n
h n h n h n w

n n
n n w h h

t t
A t rot t rot t rot

G t t G

τ τ  

Also, let 1
1

y( ) y( )
w y( )n n n

n

t t
t

τ
−−

= −& , ( ) ( )2w y( ) R y( )n
h n h nrot t rot t= Π −  and choosing the nz e= , 

( ) ( )
1

1 2

e e
, e (e , e ) (w , e ) (w ,  e ) y( ), y( ), e y , y , e

n n
n n n n n n n n n n n

w n n w h hA rot G t t G
τ

− − + = + + −  
 

 

Therefore, we have 

( ) ( )
( )

2 2
1

1 2

1 2

3 1 3 1

4 4 4 4
1 2

e (e , e ) e w e w e y( ), y( ),  e y , y , e

w e w e e , y( ),  e

w e w e e e y( ) e e

−− + ≤ ⋅ + ⋅ ∇ + −

= ⋅ + ⋅ ∇ +

≤ ⋅ + ⋅ ∇ + ⋅ ⋅ ⋅ ⋅

n n n n n n n n n n n n
w w h n h n w h h

n n n n n n
w h n

n n n n n n n n
w h n

rot G Q t Q t G

G Q t

c Q t

τ τ τ τ

τ τ τ

τ τ τ

 

Then, 

3 1
2 2

1 2 2
1 2e e (e , e ) w e w e e e y( )n n n n n n n n n n

w w nrot c tτ τ τ τ−+ ≤ + ⋅ + ⋅ ∇ + ⋅ ⋅  

By the boundedness of y  and the Poincare` inequality, it follows 

( )2 2 2 2
1

1 2 1

1 1
e e e e w w e

2 2

n n n n n n n
w wrot c rotτ τ−+ ≤ + + + + ⋅ . 

Consequently, 

( )22 2 2 2
1

1 2 1

1 1
e e e w w e

2 2 2 2

n n n n n n
w wrot c rot

τ ττ −+ ≤ + + + + . 

That is, 

2 2 2 2 2
1 22

1 2 1

1 1
e e e w w

2 2 2 2

n n n n n
w

c
rot c

ττ −  + ≤ + + + 
 

 

By repeated application, 

2 2 2 2 2
0 2

2 1 2 1

1 1

e e e w w
2

n n
n n i i

w

i i

rot c c
τ τ

= =

 
+ ≤ + + + 

 
 
∑ ∑                                              (42) 

By Lemma 4.1 and ( ) ( )R y yh w hrot rot Q= , 

2 3 1
w y( )

i s
i s

c h t +≤ . 

From ( )
1

2

1 1 1 2

y( ) y( )
w y( ) y( ) ( )

i

i

t

i i
i i i

t

t t
t t t t dt

t t
τ τ

−

− −
∂ ∂= − − = −

∂ ∂∫ , 

1

2

1 1 2

1 y( )
w ( )

i

i

t

i
i

t

t
t t dt

tτ
−

−
∂= −

∂∫                                                                               (43) 
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Thus, 

1 1 1 1

2
2 2

2 2 22
2

1 1 1 42 2 2 2

1 y( ) 1 y( ) y( )
w ( ) ( )

i i i i

i i i i

t t t t

i
i i

t t t t

t t t
t t ds d t t dt dt d c dt

t t t
τ

τ τ
− − − −

− −
Ω Ω

    ∂ ∂ ∂   = − Ω ≤ − ⋅ Ω ≤ ⋅     ∂ ∂ ∂    
∫ ∫ ∫ ∫ ∫ ∫           (44) 

Then by substituting (4.15) into (4.13), we have 

( )
2

22 2 2 20 2 2

21
1 0

y( )
e e e y               0

ntn
n i r

w r
i

t
rot C h ds n

t
τ τ τ+

=

 ∂ + ≤ + ⋅ + >
 ∂
 

∑ ∫  

The proof is completed. 

5. Numerical Experiment 

In this section, we present the results of numerical 

experiment. We carry out benchmark test in 2D. We consider 

a simple problem for the incompressible viscous MHD 

equations with known analytical solution in 2D. We choose 

[0,1] [0, 1]Ω = ×  and time interval I [0,1]=  with 

computational domain. Also we assume that problem (2.1)-

(2.5) has an analytic solution, which is given by 

u ( sin 2 cos 2 , cos 2 sin 2 )t t Te x y e x yπ π π π− −= − ,

B ( sin 2 , sin 2 )t t Te y e xπ π− −= , 

By simple computation, we use the parameters 

2 2

1 1
, , 1

8 4
aµγ γ

π π
= = =  in the tests. 

We choose uniform triangular mesh and let 

1 ( 8, 16, 32, 64, 128)h N N= =  be mesh sizes for triangular 

meshes. 

Let u  and uh  be the exact velocity and the WG finite 

element approximation, B  and Bh  be the exact magnetic 

field and the WG finite element approximation. 

In the test, hτ =  and 2hτ =  are used to check the order of 

convergence with respect to time step size τ  and mesh size 

h . The results are shown in Table 1 and Table 2. 

Table 1. Result of WG finite element method with 2 21 8 , 1 4 , 1aµγ π γ π= = =  and 

hτ = . 

1 h  (u u )
n

h
∇ −  u u

n

h
−  (B B )

n

h
∇ −  B B

n

h
−  

8 1.054e-2 1.32e-3 3.78e-1 4.16e-3 
16 3.42e-3 2.64e-4 6.15e-1 3.58e-4 

32 2.609e-3 5.41e-4 2.79e-2 5.17e-4 

64 4.27e-4 3.92e-5 4.38e-3 3.26e-5 
128 8.11e-4 4.59e-6 7.43e-4 2.91e-5 

Table 2. Result of WG finite element method with 2 21 8 , 1 4 , 1aµγ π γ π= = =  and 

2hτ = . 

1 h  (u u )
n

h
∇ −  u u

n

h
−  (B B )

n

h
∇ −  B B

n

h
−  

8 2.37e-3 1.74e-5 4.05e-2 2.95e-4 
16 6.27e-4 3.89e-6 2.71e-2 5.38e-5 

32 3.19e-4 7.15e-6 3.83e-3 4.79e-5 

64 4.08e-5 2.57e-6 1.82e-4 7.48e-6 
128 3.93e-5 5.29e-7 2.36e-5 6.83e-6 

From these results, we can know that WG finite element 

method is advisable and efficient. 

Remark 2. For the above exact solutions u  and B , we 

know that hydrodynamic pressure p  and minor control 

possible electromotive force Jc  are 

2 2 2(cos 2 cos 2 cos 2 cos 2 )tp e x y x yπ π π π−= + − ⋅ , 

2 2 2J (sin 2 cos 2 cos 2 sin 2 )t
c e x y x yπ π π π−= − ⋅ + ⋅ , 

respectively. 

6. Conclusion 

In this paper, we have formulated the weak Galerkin 

finite element scheme for the incompressible viscous 

magneto-hydrodynamic equations on arbitrary polygons or 

polyhedra with certain shape regularity. Also, we have 

estimated the error of the semi-discrete and full-discrete 

approximate solutions by the weak Galerkin finite element 

method for the incompressible viscous Magneto-

hydrodynamic equations. 

In particular, we have derived the optimal error estimates 

for velocity and magnetic field in Hilbert space, respectively. 

In furture work, we will develop for more general 

problems, such as incompressible viscous Magneto-

hydrodynamic equations with other boundary conditions and 

numerical experiment et al, from practical requirement. 
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